
HOLE-CUTTING FOR THREE-DIMENSIONAL OVERLAPPING
GRIDS ∗

N. ANDERS PETERSSON†

SIAM J. SCI. COMPUT. c© 1999 Society for Industrial and Applied Mathematics
Vol. 21, No. 2, pp. 646–665

Abstract. A hole-cutting technique for assembling overlapping grid systems for solving partial
differential equations is presented. In the present method, the closed surfaces on the boundary of the
three-dimensional computational domain are represented by hybrid surface grids. The hybrid grids
are composed of nonoverlapping structured surface grids joined by an unstructured layer of triangles.
Each hybrid grid is constructed from a subset of the physical boundary points on the faces of the
component grids.

The holes in the component grids are made by using a two-step mark-and-fill method. We
first locate all grid cells that intersect the hybrid surface grids. We then apply the ray method to
determine whether the grid points in these intersected grid cells are inside or outside the region
bounded by the hybrid surface grids. As a result, the boundary of the hole region will be marked
and it is a simple matter to then remove all points from the hole by starting from the outside points
and traversing along all three grid directions until an inside point is found. To locate the intersecting
grid cells, we employ the ray method augmented by an octree-based search technique together with
Newton’s method to invert the mappings corresponding to each component grid.

We demonstrate the hole-cutting method by running the code Chalmesh to generate overlapping
grids for a sphere in a box, around the stern of a ship, and around a three-bladed ship propeller.

Key words. overlapping grids, overset grids, Chimera grids, hole-cutting

AMS subject classifications. 65M50, 65N50

PII. S1064827597329102

1. Introduction. The most commonly used algorithm for assembling an over-
lapping grid from a set of structured component grids consists of two major parts.
The first step is to detect all hole points outside the computational domain and the
second step is to classify the remainder of the grid points as either discretization,
interpolation, or hole points (see Figure 1.1). In this paper, we focus on the first part,
which is also called the hole-cutting.

The basic overlap algorithm, developed by Benek, Buning, and Steger [1] and
Kreiss [7], works well for simple cases, like the grid in Figure 1.1. Since each part of
the boundary is completely described by one closed grid line, it is possible to use this
grid line to determine whether a point in the background grid is inside or outside the
computational domain. It becomes harder to detect the hole points when more than
one component grid describes each part of the boundary of the computational domain,
as in Figure 1.2. In this case, there is no closed grid surface from one component that
can be used to cut out holes from the background grids. Furthermore, there can be a
mismatch at the boundary where the components overlap each other. The mismatch
makes the definition of the boundary slightly imprecise, which complicates the hole-
cutting process since there is no unique definition of the extent of the computational
domain close to the boundary in the overlap region. The mismatch problem becomes
more pronounced when the grid is very fine in the direction normal to the boundary,
and the grid cells have a large aspect ratio; see Petersson [11].

∗Received by the editors October 21, 1997; accepted for publication (in revised form) May 26,
1998; published electronically October 14, 1999.

http://www.siam.org/journals/sisc/21-2/32910.html
†Hydromechanics Division, Naval Architecture and Ocean Engineering, Chalmers University of

Technology, Gothenburg, Sweden (andersp@na.chalmers.se).

646

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 647

Fig. 1.1. A simple overlapping grid where the hole points are blanked. The circles indicate
interpolation points where the solution value is interpolated from the overlapping component grid.
The remainder of the points are used to discretize the partial differential equation or the boundary
conditions.

Fig. 1.2. The component grids on the surface of a sphere. Each pole of the sphere is covered
by a smooth component to avoid the polar singularity.

One way to avoid the mismatch complications would be to use a globally valid
boundary description, e.g., from a CAD system. To define the behavior of the com-
ponents in between the grid points, that approach would require the overlapping grid
algorithm to communicate closely with the component grid generators and the CAD
system during the assembly of the overlapping grid. To code up such a monolithic
system would require a lot of work, and it would also be hard to use component grids
from external special-purpose grid generators in that system. For these reasons, we

648 N. ANDERS PETERSSON

advocate a modular system that separates the overlapping grid assembly from the
geometry description and the component grid generation.

A number of algorithms exist for constructing overlapping grids. Here we will
review the hole-cutting aspects of the methods. For a more thorough description, we
refer to Petersson [11]. The technique developed by Benek, Steger, and Dougherty [2]
and Benek, Buning, and Steger [1] has been implemented and developed further in
the code PEGSUS [13]. In order for the algorithm to cut the holes, the user must
specify the hole-cutting surface as well as the hole grid, i.e., the grid in which the hole
should be made. The hole-cutting surface can be either one or more grid surfaces or
one or more rectangular boxes. Each grid point in the hole grid is checked to see if
it is inside or outside the hole-cutting surface. This method requires the collection
of hole-cutting grid surfaces to be convex, so holes with a concave boundary must be
decomposed into convex parts by the user before the algorithm is applied.

Meakin [9] proposed a more efficient method, where hole-cutting surfaces can
be defined by combinations of simple analytical shapes like cylinders and spheres.
Although this imposes restrictions on the shape of the object to be gridded, it makes it
straightforward and inexpensive to determine whether a grid point is inside or outside
of the hole-cutting surface. This technique is implemented in the code DCF3D.

A combination of the overlapping grid method and the patched multiblock ap-
proach, where the component grids have common internal boundaries, is used in the
technique developed by Maple and Belk [8] and implemented in the code Beggar. In
this method, there can be one or several patched component grids within each super-
block. The super-blocks overlap each other and communicate through interpolation.
A data structure based on a combination of octrees and BSP-trees is used for deter-
mining whether a point is inside or outside of a super-block as well as providing an
initial approximation for inverting the component grid mappings. The algorithm uses
all grid surfaces with solid boundary condition to cut holes. The hole points outside
of the computational domain are identified in a two-step mark-and-fill process, which
requires the union of the hole-cutting grid surfaces to be closed but allows very thin
holes.

Both PEGSUS and DCF3D require rather detailed user input concerning where
holes should be cut out from the component grids. A more automatic method was
developed by Chesshire and Henshaw [4] and originally implemented in the Fortran
code CMPGRD [3]. The current version of the code is rewritten in C++ and is
part of the Overture framework [5]. In that method, the algorithm determines it-
eratively where the holes should be made, based on where the physical boundary is
located. Discrepancies between the boundary representations where the mappings
overlap are handled by a user-specified mismatch tolerance together with a correction
of the interpolation weights. This procedure is similar to the technique described by
Petersson [11]. Although the iterative approach makes it possible to construct over-
lapping grids around very complicated objects, the algorithm encounters difficulties
if the overlap between two component grids is too narrow. Then the number of hole
points will increase during each iteration of the classification, resulting in an empty
overlapping grid where all grid points are labeled as hole points.

The present method is an extension of the two-dimensional (2D) hole-cutting tech-
nique developed by Petersson [11] to the three-dimensional (3D) case. The boundary
of a bounded 3D computational domain consists of a number of closed surfaces. We
represent each closed boundary surface by a hybrid surface grid consisting of nonover-
lapping structured surface grids joined by an unstructured layer of triangles; see Fig-

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 649

Fig. 1.3. One hybrid grid covers each closed surface on the boundary of the computational
domain.

ure 1.3. A similar type of grid was used by Kao and Liou [6] for solving the equations
of gas dynamics. Here, we use the hybrid grid to get a unique definition of the bound-
ary of the computational domain. It is important that the boundary be unique since
we employ the ray method (see Milgram [10]) to determine whether a point is inside
or outside the computational domain during the hole-cutting algorithm.

Each hybrid grid is constructed from a subset of the physical boundary points on
the faces of the component grids. In regions where the surface grids do not overlap,
the hybrid grid is structured and consists of the quadrilateral grid cells. To make the
hybrid grid unique where the surface grids overlap each other, some grid points in
the overlap region are blanked, such that the remaining points in the surface grids
do not overlap each other. The gap between the surface grids is filled by triangles
that connect the internal boundaries. We present the full algorithm for constructing
hybrid surface grids in section 2.

The holes in the component grids are made by using a two-step mark-and-fill
method similar to the technique employed by Maple and Belk [8]. We first locate all
grid cells that intersect the hybrid surface grids. Once the intersected grid cells have
been located, we use the ray method to determine whether the grid points in these
intersected grid cells are inside or outside the region bounded by the hybrid surface
grids. The holes are then filled starting from the outside points by traversing along
all three grid directions until an inside point is found. To locate the intersected grid
cells, we must be able to invert the mapping corresponding to a component grid. For
this purpose, we first employ the ray method to check if the point on the hybrid grid
is inside or outside the boundary of the component. If it is inside, we proceed by
locating the intersected grid cell by using an octree-based search technique together
with Newton’s method. The details of the hole-cutting algorithm are described in
section 3.

The present hole-cutting method can handle boundaries that are described by
several overlapping components and does not require the sides with a solid boundary
condition to form closed surfaces. Similar to CMPGRD, the boundary mismatch

650 N. ANDERS PETERSSON

Fig. 2.1. The extent of the computational domain is determined by the physical boundaries
and by the position of the component grids relative to those boundaries. Here solid lines are phys-
ical boundaries, dashed lines represent interpolation boundaries, and dotted lines indicate external
boundaries.

problem is handled by using a mismatch tolerance, which in the present method is
estimated automatically.

The method has been implemented in the overlapping grid code Chalmesh [12].
In section 4, we use this code to exemplify the method on three geometries: a sphere
in a box, a ship hull, and a three-bladed ship propeller.

2. The hybrid surface grid. The boundary points on the faces of the compo-
nent grids can be physical or nonphysical. The physical boundary points are situated
on the boundary of the computational domain. For example, in a fluid flow model,
all grid points on no-slip, slip, inflow, outflow, and far-field boundaries are physi-
cal boundary points. The nonphysical points can be interpolating or external. An
interpolating boundary point lies inside another component grid such that the solu-
tion value can be interpolated to that boundary, and an external boundary point is
situated outside the computational domain (see Figure 2.1).

In the present method, each face of each component grid is labeled as either
physical, mixed physical-external, or nonphysical. A surface label is assigned to all
physical and mixed physical-external faces such that the surface label is the same for
all faces of all components that are aligned with the same part of the boundary. The
external portion of a mixed physical-external face in one component is bounded by
an edge curve that is situated at the intersection between two physical grid faces in
one or several other component grids; see Figure 2.2.

The hybrid grid on each part of the boundary, i.e., corresponding to the same
surface label, is constructed in three steps. The first step is performed only if there
are mixed physical-external faces on any component grid and consists of blanking the
external surface points outside the edge curves. The second step is to construct a
nonoverlapping surface grid, and the third step is to set up the surface triangulation
that will join the nonoverlapping grids. To perform the first two steps, we must be
able to invert a surface mapping to check whether a point on one surface grid is inside
another surface grid. We start by describing that algorithm.

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 651

Fig. 2.2. External surface points are not on the boundary of the computational domain and
must therefore be removed before the hybrid surface grid is constructed. In this case, the grid points
on the cylinder, inside the ellipse, are external. They are bounded by an edge curve, which is located
at the intersection between the cylinder and the ellipse.

2.1. Inverting a surface grid mapping. Let us consider inverting the map-
ping corresponding to a continuous curvilinear surface grid

x = S(r, s), 0 ≤ r ≤ 1, 0 ≤ s ≤ 1, x = (x, y, z).

It is not practical to restrict the inversion algorithm to points that are exactly on the
surface S, since there can be a mismatch between the surface grids that describe the
same physical boundary. We handle the mismatch problem by introducing a surface
tolerance εs > 0 and consider all points that are within εs of the surface to be on the
surface.

The required size of the mismatch tolerance is related to the smoothness of the
surface grid. Let there be N -by-M grid points in the surface grid with physical
coordinates xi,j , 1 ≤ i ≤ N , 1 ≤ j ≤M . We estimate the mismatch tolerance by

εs = max
1<i<N,1<j<M

|ni,j · (xi−1,j + xi+1,j + xi,j−1 + xi,j+1 − 4xi,j)/4|,

where the unit surface normal is

ni,j =
(xi+1,j − xi−1,j)× (xi,j+1 − xi,j−1)

|(xi+1,j − xi−1,j)× (xi,j+1 − xi,j−1)| .

The estimated mismatch tolerance is sufficient in most cases, but it can be necessary
to increase it further for very unsmooth grids.

To allow for boundary mismatch, we extend the surface to a thin volume around
the surface, with thickness εs. Hence, the actual problem is to invert

x = S(r, s) + tn(r, s), |t| ≤ εs,(2.1)

where n is the unit normal of S.

652 N. ANDERS PETERSSON

Before Newton’s method can be applied to solve (2.1), we must determine if x is
sufficiently close to S and, in that case, compute an initial guess of the solution. For
this purpose, we apply a search technique based on quad trees.

The root of the quad tree contains the bounding box of the physical coordinates
of all grid points in the surface grid. The bounding box is extended by εs on all sides
to ensure that all points within an εs distance of S are also inside the bounding box.
The root has four subnodes that contain the bounding boxes of the four subgrids
obtained by dividing the surface grid along the grid lines i = [N/2] and j = [M/2].
(Here [a] denotes the integer part of a.) Each node of the tree is subdivided recursively
into four subnodes until the corresponding subgrid contains only one grid cell. These
nodes are the leaves of the quad tree.

To invert the surface grid mapping for a point xp, we first check whether it is
inside the bounding box of the root of the quad tree. If it is, we repeat the test
recursively in the subnodes until a leaf is found whose bounding box contains xp. If
no such leaf is found, or if xp is outside of all bounding boxes on one level of the tree,
the point must be further than εs away from S and the search is terminated. If an
enclosing leaf is found, we apply Newton’s method to invert (2.1) starting from the
parameter value in the middle of the corresponding grid cell. If the iteration converges
to a point within εs of the surface, we terminate the search. Otherwise we continue to
traverse the quad tree until all enclosing leaves have been checked. This is necessary
since the bounding boxes of the subgrids on one level can overlap each other.

2.2. Blanking surface points outside edge curves. There are geometries
where it is natural to extend the physical boundary to the outside of the compu-
tational domain to simplify the construction of the component grids. One example
is a wing-fuselage junction on an aircraft, where the surface of the fuselage is also
described inside the wing. A straightforward way of gridding this geometry is to put
one component grid around the fuselage and one around the wing. Since the grid
points on the surface of the fuselage, inside the wing, are not on the boundary of the
computational domain, they must be blanked before the hybrid surface grid can be
constructed.

In the above case, the external surface points inside the wing are bounded by
the grid line in the wing grid that is on the edge between the wing surface and the
fuselage. In the present method, we assume that an edge curve is always situated at
the intersection between two physical grid surfaces. The simplest case occurs when
only one component grid describes the physical surfaces, so that the edge curve is a
grid line in that component. In the general case, the edge curve can consist of several
overlapping parts from different component grids. In this case, we represent the edge
curve by a polygon through all edge points from the different parts. To make it easy
to estimate the tangent of the edge curve, we sort the points on the edge curve. To
handle the case with thin holes, where the tangential distance between the edge points
is larger than the thickness of the hole, we apply the algorithm for sorting boundary
points in a 2D overlapping grid described in Petersson [11], extended to 3D curves.

The edge curve defines the boundary of the external surface points. To determine
if a surface point is inside or outside the edge curve, we also save two test curves
together with the edge curve. The test curves are grid lines on each of the two
physical grid surfaces that join at the edge curve (see Figure 2.3). Since the test
curves are on the boundary of the computational domain, they are always inside the
edge curve.

To blank external points on a grid surface, we first search through the grid points

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 653

Test curve # 2

Test curve # 1

Edge curve

Fig. 2.3. The test curves are located close to the edge curve, on the physical grid surfaces that
join at the edge curve.

t

Edge curve

Enclosing grid cell

Test point
 Closest point on edge curve

t

n

xn

Fig. 2.4. The surface normal, edge tangent, and edge normal in the surface plane. Observe
that the edge curve and the test point do not belong to the surface grid shown in the figure.

on the two test curves. If one point xt is found to be on the grid surface, we compute
the normal, n, of the surface at the cell that contains the test point. We also locate
the grid point xe on the edge curve that is closest to the test point and compute the
tangent, t, of the edge curve at that point. The cross product between the surface
normal and the edge curve tangent defines a normal of the edge curve that is tangential
to the grid surface (see Figure 2.4). Consider

s(xt) = sign((xt − xe) · (t× n)).

Since xt is on the boundary of the computational domain, that is, inside the edge
curve, we can use s(xt) to determine whether another surface grid point, xp, which is
close to the edge curve, is inside or outside the edge curve. To do this, we compute
the surface normal at the grid cell that contains xp, locate the closest point on the
edge curve, and compute the tangent of the edge curve. The point xp is inside the
edge curve if s(xp) has the same sign as s(xt); otherwise it is outside.

The surface grid points outside the edge curve are blanked by using a mark-and-
fill technique, related to the method used by Maple and Belk [8]. All surface grid cells

654 N. ANDERS PETERSSON

Nonphysical edge

Lower priority Higher priority

Fig. 2.5. The blanking of the overlapping surface points depends on the priority of the surface
grids. Here, boundary points are marked with circles.

that are intersected by the edge curve are first identified. We start by locating the
cells that contain the vertices of the edge curve. If those cells are not contiguous, we
subdivide the segments between the vertices and repeat the identification recursively.
The grid points in the intersected cells are then marked as either I- or O-points,
depending on whether they are inside or outside the edge curve. The external surface
points are identified by starting at the O-points and proceeding along the grid lines
in both directions. The location of the I-points next to the O-points defines in which
direction the external points are situated. We blank all points until we reach the next
I-point along the grid line, or until the grid line ends.

2.3. Constructing the nonoverlapping surface grid. Let the structured
surface grids covering each closed boundary surface be ordered in a linear hierarchy
where the grid with the highest number has the highest priority. All edges of the
surface grids correspond to edges in the component grids. We label all edges located
between physical grid faces as physical. The other edges are labeled as nonphysical.

Each grid point in each surface grid is marked as internal or overlapping, de-
pending on whether it is outside all other surface grids or inside at least one other
surface grid. For the overlapping points, we save the priority of the highest overlap-
ping surface grid so that the appropriate points in the overlap region can be blanked.
A grid point is on an internal boundary that should be connected to another internal
boundary in either of the following situations (see Figure 2.5): first, if it is an internal
point and at least one of its nearest neighbors is an overlapping point inside a higher
priority surface grid; second, if the point is located on a nonphysical edge and is inside
of a lower priority surface grid. After all boundary points have been identified, we
blank all overlapping points that are inside a higher priority surface grid.

Before the internal boundary points are connected by triangles, we determine to
which surface grid each boundary point should be connected. For this purpose, we
locate the closest boundary point with respect to a weighted distance function that

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 655

Fig. 2.6. The closest boundary point near an edge curve can be on the other side of the edge.
Here, boundary points are marked by filled squares.

puts a penalty on distances in the normal direction:

d(x1,x2) =

(√
|x1 − x2|2 + 100(n1 · (x1 − x2))2,

√
|x1 − x2|2 + 100(n2 · (x1 − x2))2

)
,

where n1 and n2 are the unit normals of the surface grid at x1 and x2, respectively.
The reason for penalizing normal distances is to avoid connecting boundary points on
opposite sides of an edge (see Figure 2.6). We remark that the penalty factor 100 is
arbitrary and could be insufficient in some cases. However, our experience indicates
that it works well in most situations.

We group the boundary points according to which grid they belong and to which
grid they will be connected. We assume that to each group A of points from grid GA
there corresponds a sister group B of points from the grid GB . All points in group
A will be connected to grid GB and all points in group B will be connected to grid
GA. The points in each group are sorted so that nearest neighbors in the surface
grid become contiguous in the group. Furthermore, to simplify the connection of the
groups, the first point in the sister group B is chosen as the endpoint that is closest
to the first point in group A.

2.4. Joining the nonoverlapping surface grids by triangles. The triangu-
lation is done in two steps. First we connect each pair of groups of boundary points
and then we triangulate the triple points, where three different surface grids meet (see
Figure 2.7).

Beginning from the first points in groups A and B, we use an incremental trian-
gulation algorithm where the first triangle connects the first points of groups A and
B and the next point in either group A or B. Since the internal boundaries can be
irregular, it is important to check that the triangle does not intersect the boundary.
If neither of the two triangles intersects the boundary, we choose the triangle with the
shortest diagonal. Once the first triangle is constructed, we move the starting point

656 N. ANDERS PETERSSON

Fig. 2.7. Each triple point is bounded by six boundary points.

to the next point and the procedure is repeated until the boundary points of groups
A and B are exhausted.

We remark that there are surface grids that cannot be connected by triangles
without intersecting the internal boundary. This situation arises when a very coarse
grid is joined to a very fine grid with a nonsmooth internal boundary. One way to
solve the problem could be to add extra surface points in between the boundaries.
However, this technique will not be discussed further here.

After the gaps between all pairs of groups have been triangulated, there remain
gaps at the triple points, where three surface grids meet. The starting and ending
points of each pair of groups are saved during the triangulation algorithm. Each
triple point is bounded by six boundary points from three pairs of starting and ending
points. To cover a triple point by triangles, we again apply an incremental approach.
We begin by locating three contiguous boundary points that form a triangle that
does not intersect the boundary of the triple point. When that triangle has been
subtracted from the triple point, the remaining domain has only five vertices and we
repeat the procedure until all vertices have been connected by triangles. The triple
point is completely covered when four triangles have been constructed.

3. Making holes in volume grids. The holes in the component grids are
made by using a two-step mark-and-fill method similar to the technique for removing
external surface points that was described in section 2.2.

The hybrid grid corresponding to each surface label contains both triangular and
quadrilateral cells. To simplify the mark step, we divide each quadrilateral cell into
two triangles so that we need only to develop a technique for marking the cells that
are intersected by a triangle. Each component grid is marked separately. The marking
starts by locating the cells that contain the vertices of each triangle on the hybrid
surface grids. If these cells are not contiguous, the triangle is subdivided into four
subtriangles and the marking is repeated recursively (see Figure 3.1).

To apply the hole-cutting method to volume grids, we must be able to invert the
mapping corresponding to a volume grid. We begin by describing that technique.

3.1. Inverting a component grid mapping. We assume that the mapping for
each component grid is one to one and that the corresponding grid in parameter space
is Cartesian with constant step size. In the following, we will denote a coordinate in

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 657

Fig. 3.1. The recursive marking of the intersected cells proceeds until the marked cells cor-
responding to each triangle are contiguous. The filled circles label the vertices of the boundary
triangles. Since the cells that contain the filled circles are separated, the triangle is subdivided to
create three new vertices, indicated by unfilled circles. After one subdivision, the marked cells are
contiguous and the recursion is stopped.

parameter space by r = (r1, r2, r3) and a coordinate in physical space by x = (x, y, z).
Furthermore, let the mapping for component grid k be x = X(k)(r) and let it map
the unit cube in parameter space onto the domain x ∈ Ω(k) in physical space.

Let us consider inverting the mapping corresponding to a continuous curvilinear
grid G in order to find the grid cell that contains a point with physical coordinate
xP . Before we attempt to invert the mapping, we must determine if xP ∈ Ω(G), since
the mapping might not be well defined outside that domain. If the point is inside
Ω(G), the second problem is to generate a sufficiently good initial approximation for
Newton’s method, which converges only if the initial guess is sufficiently close to the
solution. Once the parameter value corresponding to xP has been computed, it is
trivial to determine the enclosing grid cell.

The inversion of a component grid mapping can be complicated by mismatch
close to a physical boundary. Similar to the 2D case (see Petersson [11]) we handle
the mismatch problem by introducing a mismatch tolerance ε > 0. Let xP be a grid
point in component grid C. If it is less than ε away from a physical face with surface
label S in grid C, we say that it is an S-boundary point. An S-boundary point is
inside component G if it is less than ε outside a physical face of Ω(G) that also has
surface label S. However, if xP is further than ε away from all physical faces in grid
C, the point is considered to be inside component G only if it is strictly inside Ω(G).

It is desirable to keep ε as small as possible because the inversion algorithm be-
comes slower for a larger ε, since more points get treated specially by the search
method. We therefore want to use the smallest ε that still enables all physical bound-
ary points from an overlapping component to be treated as if they were inside the
component. Furthermore, to correctly classify the points that remain after the hole
cutting, the mismatch tolerance must be sufficiently large to allow all interpolation
points close to a physical boundary in their own grid to interpolate from the appro-
priate component grid. In the present method, we take the mismatch tolerance ε for
a component grid to be the largest surface tolerance εs in any of the physical grid
faces of the component.

658 N. ANDERS PETERSSON

3.1.1. Is a point inside a component grid? To determine if a point with
physical coordinate xP is inside the domain Ω(G), we first check if it is inside the
approximate boundary consisting of a structured surface triangulation that connects
all boundary grid points of the grid G.

The triangulated boundary is slightly outside the true boundary when it is concave
and slightly inside the true boundary when it is convex. For points that are inside the
triangulation, but outside the true boundary, the subsequent Newton iteration will
converge to a parameter coordinate outside of the unit cube. If the nearest boundary
is physical, it can be determined whether the point is within the ε mismatch tolerance.
If the boundary is nonphysical, the point is classified as being outside of the grid G.

The situation is more complicated for points that are outside the triangulation
but inside the true boundary. When xP is not an S-boundary point for any surface
label S, the problem is not critical because xP is only slightly inside the grid G, so
it would not be a valid interpolation point anyway. However, if xP is an S-boundary
point, we check if it is within the ε tolerance by computing the normal distances
between xP and all physical grid faces with surface label S. The normal distance is
computed by inverting the surface grid mappings corresponding to physical grid faces
of G by using the technique described in section 2.1.

The six grid faces of component grid G correspond to six structured surface grids
S(k), k = 1, 2, . . . , 6. The vertices of the surface triangulation coincide with the
vertices of the surface grids and each quadrilateral surface grid cell is divided into two
triangles. The physical coordinates of a triangle with vertices pi, i = 1, 2, 3, can be
expressed in barycentric coordinates according to

xtri(β1, β2) = p3 + β1(p1 − p3) + β2(p2 − p3), 0 ≤ β1, β2 ≤ 1.

We use the ray method (see [10]) to check whether xP is inside the surface trian-
gulation of G. Let the ray start at xP and tend to infinity in the negative x-direction.
The physical coordinates of the ray are given by

xray(t) = xP − tex, t > 0, ex = (1, 0, 0).

The ray intersects the triangle if there is a solution of

xray(t) = xtri(β1, β2)(3.1)

with 0 ≤ β1, β2 ≤ 1, t > 0. The linear system (3.1) is uniquely solvable if the normal
of the triangle is not orthogonal to ex. If it is orthogonal, we define the ray not to
intersect the triangle.

The physical coordinates of all intersection points between the ray and the trian-
gles of S(k), 1 ≤ k ≤ 6, are saved so that multiple intersection points can be removed
before the intersections are counted. Multiple intersections occur, for instance, when
the ray intersects a vertex. The ray will then intersect all six triangles that are
connected to the vertex.

It is not necessary to solve (3.1) for every triangle in the six surface grids to count
all intersections. The number of operations is substantially reduced by noting that the
ray can intersect the triangles in a surface grid only if it intersects the bounding box of
the surface grid. To use this property, we construct a quad tree for each surface grid
S(k) in the way that was described in section 2.1. During the search for intersection
points, we need consider only the subgrids whose bounding boxes are intersected by
the ray, and (3.1) is solved only for the leaves of the quad tree that are encountered
during the traversal of the tree.

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 659

3.1.2. Generating an initial guess for Newton’s method. Let the point
xP be inside of the surface triangulation of a component grid G. To generate a good
initial guess for Newton’s method we locate the grid cell that contains xP .

Let the grid points of grid G have physical coordinates xi,j,k, 1 ≤ i ≤ N1, 1 ≤
j ≤ N2, 1 ≤ k ≤ N3. We define the component grid mapping inside each grid cell
(i0, j0, k0) by trilinear interpolation:

xcell(α1, α2, α3) =
1∑
i=0

1∑
j=0

1∑
k=0

γi(α1)γj(α2)γk(α3)xi0+i,j0+j,k0+k, 0 ≤ αl ≤ 1,

l = 1, 2, 3.(3.2)

Here, the linear base functions are γ0(α) = 1− α and γ1(α) = α.
The point xP can be inside a grid cell only if the point is inside the bounding

box of the physical coordinates of the cell. However, the bounding box can be much
larger than the grid cell, for instance, when the cell is very thin in one direction and
the cell is orientated diagonally to the (x, y, z)-directions. It can therefore happen
that Newton’s method for solving

xcell(α1, α2, α3) = xP(3.3)

diverges, even though xP is inside the bounding box of the cell. However, if xP is
inside the cell and the Jacobian of the trilinear mapping (3.2) is nonsingular, our
experience indicates that Newton’s method always converges, starting from the initial
guess (α1, α2, α3) = (0.5, 0.5, 0.5).

Corresponding to the search technique for surface grids, we use an octree to
locate the enclosing grid cell in the component grid. The root of the octree contains
the bounding box of xi,j,k, 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, 1 ≤ k ≤ N3. The root has eight
subnodes that contain the bounding boxes of the eight subgrids obtained by dividing
the component grid along the grid lines i = [N1/2], j = [N2/2], and k = [N3/2]. Each
node of the octree is divided recursively into eight subnodes until the nodes contain
only one grid cell. These are the leaves of the octree.

To find the grid cell that contains the point xP , we use a similar approach as
when a quad tree is traversed (see section 2.1). When a leaf with enclosing bounding
box is encountered, we apply Newton’s method to solve (3.3). If it converges to a
point inside the cell, the search is terminated. Otherwise, if the iteration diverges or
converges to a point outside the cell, we continue to traverse the remainder of the
octree. We remark that since xP is inside the surface triangulation on the boundary
of the component grid, there must be a grid cell that contains xP .

3.2. Is a point inside the computational domain? Before all points outside
the computational domain can be removed, we must mark the grid points in the grid
cells that contain the boundary of the computational domain. Points that are within
the mismatch tolerance of a physical boundary in their own component are considered
to be inside the computational domain. To mark points that are separated by more
than the mismatch tolerance from all physical boundaries in their own grid, we apply
the ray method and count the intersections between the ray and the hybrid surface
grids on all parts of the boundary of the computational domain.

Each hybrid grid consists of two parts: structured surface grids, where some
grid points are blanked, and unstructured triangles that join the boundaries of the

660 N. ANDERS PETERSSON

Fig. 4.1. The five components in the overlapping grid for a sphere in a box.

structured surface grids. It is straightforward to modify the technique in section 3.1.1
to count an intersection between the ray and a structured surface grid only if it occurs
in a cell where no vertices have been blanked.

The unstructured triangles connect pairs of groups of boundary points and the
triangles associated with each pair are ordered sequentially by construction. We
therefore apply a binary search technique for counting intersections between the ray
and the triangles from each pair. Finally, we must account for the triangles that cover
the triple points on the surface. Since there are only four triangles on each triple
point and there are usually only a few triple points in every surface triangulation, we
apply the direct approach and check each of the triple point triangles for intersection.

4. Examples. We demonstrate the hole-cutting method by running the code
Chalmesh [12], version 1.0-beta, compiled with optimization on a DEC-α station 200
with 64 Mbytes of RAM. Apart from the hole-cutting algorithm, the code contains a
3D version of the classification algorithm described in Petersson [11], some component
grid generators, and an interactive graphics tool for visualizing the component grids
and the overlapping grid in a variety of ways.

To indicate the CPU-time requirements of the hole-cutting algorithm, we con-
sider the grid around a sphere inside a box, shown in Figure 4.1. To avoid the polar
singularities, three components are used to describe the domain around the sphere.
A coarse Cartesian grid extends to the boundary of the box and a finer Cartesian
grid refines the discretization close to the sphere. Three overlapping grids were con-
structed. The number of grid points in each direction was increased by approximately
50% between the coarse and the medium grid and between the medium and the fine
grid. The timings, presented in Table 4.1, indicate that the number of operations
increases slower than linearly with the number of grid points.

The next example is the stern of a ship. The surface of the ship, together with the

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 661

Table 4.1
CPU time in seconds required by Chalmesh to set up the data structures and perform the hole

cutting for the overlapping grid in Figure 4.1.

Grid # grid points Initialization Hole cutting Total Total/grid point
Coarse 27050 2.2 6.3 8.5 3.14× 10−4

Medium 73598 4.6 14.7 19.3 2.62× 10−4

Fine 216400 10.2 42.0 52.2 2.41× 10−4

Fig. 4.2. The surface of the ship stern and the outline of the 7 component grids. This grid
contains 137, 264 grid points.

outline of the component grids, is shown in Figure 4.2. In this case, three components
are aligned with the surface of the ship to avoid the singularity at the aft bulb, where
the propeller normally is attached. The body-fitted components are grown out from
the surface by using a hyperbolic technique. Since there are concave regions on the
surface, the thickness of these grids is of the order of the radius of curvature in the
concave areas. The ship is enclosed in a rectangular box that extends to the far-field
boundary. Since the flow field far from the ship can be expected to vary slowly, we
make the Cartesian background grid in the rectangular box rather coarse. On the
other hand, the geometrical properties of the ship surface restrict the thickness of
the body-fitted components. We therefore use intermediate components to refine the
region in the vicinity of the ship but outside the body-fitted grids. The thickness of
the intermediate grids is not limited; thus they can be made sufficiently wide and fine
to capture the details in the flow field close to the ship that cannot be resolved on the
Cartesian background grid.

The boundary of the computational domain consists of one closed surface. Before
the hybrid grid is constructed, we use three edge curves to remove external parts
from mixed physical-external faces of the background grid and the intermediate com-
ponents. The edge curves are located along the ship surface in the symmetry plane,
the water line, and the inflow cross section. Note that the edge curve along the water
line consists of parts from two components and the edge curve along the symmetry
line is described by edge points from all three boundary-fitted components. The re-

662 N. ANDERS PETERSSON

Fig. 4.3. A closeup of the hybrid grid close to the aft bulb of the ship.

sulting hybrid grid is shown in Figure 4.3. It took 22.3 seconds to set up the data
structures and the hole cutting required 27.4 seconds. The result of the hole-cutting
algorithm is presented in Figure 4.4.

The final example is a three-bladed DTRC–4119 ship propeller. We show the
propeller surface together with the hub in Figure 4.5. The surface grids on the pro-
peller surface are also outlined in the figure. On each propeller blade, we use one
surface grid on each side of the blade and one surface grid around the edge of the
blade. This decomposition is convenient because the curvature on each side of the
blade is rather small, while it is very large at the leading and trailing edges, as well
as around the tip of the blade. Furthermore, the singularity at the tip is avoided in
this way. Since the curvature is high close to the edge, we concentrate grid points in
this region. The body-fitted component grids are grown out from the blade using a
hyperbolic technique, and the grid faces at the root of the blades are projected onto
the hub surface. Since the curvature at the edge is very large, the grid cells in the
edge grid expand significantly from the blade surface toward the outer grid surface.
We therefore want to keep the edge grid rather thin. To resolve the tip vortex and the
wake behind the blades, we again employ intermediate components. In this case each
blade is contained in a twisted box grid whose thickness and grid sizes can be chosen
to resolve the flow features in the vicinity of the blades. We embed the propeller in a
rather coarse cylindrical background grid. To better resolve the flow close to the hub,
we resolve this region with a finer cylindrical grid.

The boundary of the computational domain consists of one closed surface. Before
the hybrid grid is constructed, three edge curves are used to blank the surface grid
points on the hub, inside the propeller blades. In this case, each edge curve is periodic
and consists of parts from four grid faces. We show the resulting hybrid grid in
Figure 4.6. The overlapping grid contains 14 components with 487,008 grid points.
The program required 72.0 seconds to set up the data structures and 751.0 seconds

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 663

Fig. 4.4. The overlapping grid around the ship stern after the hole cutting.

Fig. 4.5. The surface of a three-bladed DTRC–4119 ship propeller on a hub. The thick lines
show the boundaries of the surface grids.

664 N. ANDERS PETERSSON

Fig. 4.6. A closeup of the hybrid grid on the propeller.

for the hole cutting. This grid was made on a DEC-α 3000 with 192 Mbytes of RAM
since it did not fit in memory on the machine that was used in the previous tests. To
compare the CPU timings, we note that the DEC-α 3000 is approximately 60% faster
than the DEC-α station 200 (based on SPEC fp-95).

5. Conclusions. A hole-cutting method for 3D overlapping grids has been de-
scribed. The algorithm has been implemented in the code Chalmesh [12], which is
distributed under the GNU general public license. (See online license information at
www.gnu.org.)

The 2D version of the algorithm [11] corrects the interpolation weights to com-
pensate for boundary mismatch. This feature has not been discussed here, but the
extension to the 3D case is rather straightforward. One part of the 3D method that
needs more work is the algorithm for connecting surface patches by triangles. As was
mentioned in section 2.4, the present technique sometimes encounters problems when
it attempts to connect a fine and a coarse surface patch. Furthermore, the algorithm
for generating nonoverlapping surface grids, described in section 2.3, fails in some
degenerate cases when the grids are very coarse. These issues will be investigated in
future work.

Acknowledgments. I thank Dr. Da-Qing Li for providing the surface grids for
the ship hull and the ship propeller as well as for testing the Chalmesh code during
its development. I also thank Dr. Geoff Chesshire as well as two anonymous referees
for pointing out shortcomings in earlier versions of this article.

REFERENCES

[1] J. A. Benek, P. G. Buning, and J. L. Steger, A 3-D Chimera Grid Embedding Technique,
AIAA paper 83–1944, American Institute of Aeronautics and Astronautics, Reston, VA,
1983, pp. 373–382.

HOLE-CUTTING FOR 3D OVERLAPPING GRIDS 665

[2] J. A. Benek, J. L. Steger, and F. C. Dougherty, A Flexible Grid Embedding Technique
with Application to the Euler Equations, AIAA paper 85–1523, American Institute of
Aeronautics and Astronautics, Reston, VA, 1985, pp. 322–331.

[3] D. L. Brown, G. Chesshire, and W. D. Henshaw, Getting Started with CMPGRD. In-
troductory User’s Guide and Reference Manual, LA–UR 90-3729, Los Alamos National
Laboratory, Los Alamos, NM, 1989.

[4] G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution of partial
differential equations, J. Comput. Phys., 90 (1990), pp. 1–64.

[5] W. D. Henshaw, Ogen: An Overlapping Grid Generator for Overture, LA-UR 96-3466, Los
Alamos National Laboratory, Los Alamos, NM, 1996.

[6] K.-H. Kao and M.-S. Liou, Advance in overset grid schemes: From Chimera to DRAGON
grids, AIAA J., 33 (1995), pp. 1809–1815.

[7] B. Kreiss, Construction of a curvilinear grid, SIAM J. Sci. Statist. Comput., 4 (1983), pp. 270–
279.

[8] R. C. Maple and D. M. Belk, A new approach to domain decomposition: The Beggar code,
in Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, N. P.
Weatherill, ed., Pine Ridge Press, 1994, pp. 305–314.

[9] R. L. Meakin, A New Method for Establishing Intergrid Communication Among Systems of
Overset Grids, AIAA paper 91–1586–CP, American Institute of Aeronautics and Astro-
nautics, Reston, VA, 1991, pp. 662–670.

[10] M. S. Milgram, Does a point lie inside a polygon?, J. Comput. Phys., 84 (1989), pp. 134–144.
[11] N. A. Petersson, An Algorithm for Assembling Overlapping Grid Systems, Tech. Report

CHA/NAV/R-97/0049, Hydromechanics Division, Naval Architecture and Ocean Engi-
neering, Chalmers University of Technology, Gothenburg, Sweden, 1997; SIAM J. Sci.
Comput., 20 (1999), pp. 1995–2022.

[12] N. A. Petersson, User’s Guide to Chalmesh Version 1.0, Tech. Report CHA/NAV/R-
97/0051, Hydromechanics Division, Naval Architecture. and Ocean Engineering, Chalmers
University of Technology, Gothenburg, Sweden, 1997; also available online from
http://www.na.chalmers.se/˜andersp/chalmesh/chalmesh.html.

[13] N. E. Suhs, Tutorial: PEGSUS Version 4.0, in 2nd Symposium on Overset Composite Grid
and Solution Technology, AIAA, New York, 1994.

